Геометрия, динамика, вселенная
Дата: 20/12/2013
Тема: дополнительные статьи к нашем курсу МВА


В течение почти 2.5 тысячелетий евклидова геометрия является одним из столпов школьной математики. практически в неизменной форме она дошла до нашего времени. Случай этот уникален. почти забыта физика Аристотеля, о математическом анализе Архимеда вспоминают лишь историки математики. Школьная же геометрия базируется на геометрии Евклида. Разница в основном лишь в методике изложения.

От администратора: представлено конспектированное изложение книги И.Л.Розенталь " Геометрия, динамика, вселенная" 

Сила традиционной геометрии - в ее общности, универсальности. Слабость - в абстрагировании, создающем предпосылки для размытия основополагающих понятий геометрии, размытия, затрудняющего их сопоставление с реальными объектами, явлениями или процессами. До определенного времени этому обстоятельству не придавали серьезного значения, однако, когда наступила пора подвергнуть геометрию критическому переосмысливанию, высветилась эта слабая сторона геометрии.

Возникла парадоксальная ситуация: самая точная и, по-видимому, самая наглядная наука - геометрия - базируется на понятиях, не поддающихся точным определениям. Чтобы оправдать такое сильное утверждение, полезно напомнить некоторые "школьные" истины. 

Учитель, начиная обучение геометрии, произносит слова: "Точка - объект, лишенный протяженности, линия - объект, характеризуемый длиной, но лишенный ширины" - и затем иллюстрирует эти определения, отмечая мелом на доске точку и проводя линию. Однако, размеры такой точки ~ 1 мм, ширина  линии также ~ 1 мм - символ точечности? Это утверждение в значительной степени базируется на авторитете учителя. 

Те же трудности возникают при попытках эмпирически воспроизвести другое основное понятие геометрии - прямую линию. Обычно полагают, что эталоном прямой является луч света, распространяющийся в пустом пространстве. Однако в соответствии с основными принципами оптики и квантовой механики ширина пучка света по порядку величины равна длине волны LAM, а это значение невозможно свести к нулю. 


  Но главная проблема, пожалуй, не в конечности величины LAM. Положение о прямолинейности распространения света в пустоте (даже в пренебрежении значением LAM) само является лишь постулатом, требующим независимого доказательства. В нашем распоряжении нет априорно идеальной линейки, которая позволила бы проверить прямолинейность распространения 
светового луча. Следовательно, это утверждение имеет лишь полуинтуитивное обоснование, основанное на том эмпирическом факте, что в нашем распоряжении нет других методов, позволивших прочертить абсолютно прямую линию между двумя точками. Однако даже это свойство света не гарантирует его

прямолинейность. Допустим, что пространство имеет форму сферы. Кратчайшее расстояние на сфере - отрезок большого круга, отнюдь не тождественный прямой. Поэтому утверждение: световой луч прочерчивает прямую эквивалентно тезису: наше пространство плоское, евклидово. А этот тезис сам нуждается в эмпирическом образовании.


В 1829 г. Н.И.Лобачевский опубликовал статью "О началах геометрии". В этой статье, так же как и в письмо молодого венгерского математика Я.Больяи, переданном К.Гауссу, утверждалось, что возможно построение непротиворечивой геометрии, не содержащей известный пятый постулат евклидовой геометрии. Этот постулат, гласящий, что через точку, лежащую вне данной прямой, можно провести одну и только одну прямую, параллельную данной, казался наиболее уязвимым (или наименее очевидным) априорным требованием евклидовой геометрии. Однако попытки вывести его из других аксиом оканчивались
всегда неудачей. Поэтому был выбран другой путь - построение геометрии, основанной на всех аксиомах и постулатах Евклида, но в которой был заменен пятый постулат о параллельных: через одну точку можно провести либо бесконечное множество прямых, параллельных данной, либо ни одной.

Для иллюстрации идеи неевклидовости пространства полезно привести достаточно простой пример. Пусть пространством является поверхность обычной двумерной сферы. Отвлечемся прежде всего от привычного образа сферы, вложенной в видимое трехмерное пространство, полагая сферу самостоятельным автономным объектом. Будем полагать, что "прямые" в таком сферическом пространстве - кратчайшие расстояния между двумя заданными точками на сфере, т.е. дуги большого круга. Положим, что бесконечным прямым в евклидовом пространстве соответствуют окружности на сфере. 

Здесь правильно будет говорить именно о соответствии, а не о тождестве, поскольку окружность на сфере обладает лишь одним свойством евклидовой прямой - отсутствием границ, но не обладает другим ее свойством - бесконечной протяженностью. Окружность на сфере безгранична, но конечна. Нетрудно,
далее, убедиться, что через любую точку сферы, не находящуюся на данном большом круге, нельзя провести большой круг, не пересекающий данный, т.е. "параллельную". Иначе говоря, все "прямые" пересекаются. Отметим также и другую важную особенность сферической геометрии. Если вырезать из сферы достаточно малую площадку, то геометрия будет имитироваться геометрией Евклида.

Cуществует естественный (хотя и сложный) класс геометрий, в рамках которого реализуется эмпирическая основа физики - динамики. Чтобы иллюстрировать предопределенность геометрии эмпирическим наблюдениями, мы рассмотрим простейший пример.

Допустим вначале, что распространение света или
радиоволн в межпланетной и межзвездной средах соответствует
прямой в смысле евклидовой геометрии. Параметры межпланетной
и межзвездной сред известны, и можно показать, что они
практически не влияют на направление распространения света
или радиоволн достаточно высокой частоты. Тогда различными
методами можно весьма точно измерять расстояния до солнца,
планет или многих звезд в Галактике. Определяя затем угол
между направлениями от Земли до двух космических объектов
(например, Солнца и одной из планет), можно вычислить сумму
углов треугольника, образованного Землей и этими двумя
объектами. И всегда, независимо от природы объектов, сумма
углов оказывается в пределах небольших экспериментальных
ошибок равной PI.` Таким образом, можно было бы сделать
вывод, что по крайней мере в пределах Галактики ее геометрия
- евклидова. Этот вывод правилен, но с одной оговоркой,
которую может использовать верный последователь Пуанкаре. В
этих рассуждениях допускалось, что направление
распространения фотонов в пустоте совпадает с прямой линией.
На чем основано это утверждение? Может быть, фотоны движутся
по кривой, а само пространство также кривое и обе кривизны
взаимно компенсируют друг друга, так что в результате
получается мнимое доказательство торжества евклидовой
геометрии?

Ответ на это возражение базируется на анализе совокупности физических фактов. Так, было проделано множество опытов по определению параллаксов различных космических объектов, расположенных на различных расстояниях от Земли. Всегда сумма углов оказывалась равной PI. 


Таким образом, весь исключительно богатый набор экспериментальных фактов согласуется с допущением: в интервале расстояний 10**-16 - 10**28 см физическая геометрия близка или тождественна евклидовой геометрии трехмерного пространства. Нам представляется этот факт
доказательством единственности геометрии в этом интервале расстояний. Однако с точки зрения чистой логики нельзя отвергнуть и другой тезис: нет доказательств, что нельзя построить всю физику на основе геометрии, существенно отличной от трехмерной евклидовой. Да, действительно строгого логического доказательства такого утверждения нет. Однако пока не сделаны хотя бы попытки построить физики в существенно измененном пространстве, все утверждения о произволе геометрии имеют абстрактный, а не физический характер. 

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Аналитическая геометрия сводит понятие точки к набору чисел - координат. Координаты - расстояния до некоторой системы линий, называемых осями координат. Простейший способ системы координат - набор взаимно ортогональных осей - система декартовых координат Полезно перечислить крупнейшие достижения аналитической геометрии. Существенно уточнено понятие точки (набор чисел).

Появилась возможность оперировать с пространствами любой целочисленной размерности. В пространстве N измерений точку определяют N чисел. Значение этого достижения аналитической геометрии в полной мере начали осознаваться сравнительно недавно. Лишь основываясь на ее методах (или модификациях этих методов), можно анализировать многомерные пространства, которые казались математической экзотикой, а сейчас приобрели большую актуальность. Евклидово пространство можно определить как бесконечное, изотропное и однородное пространство. Любые две его точки полностью эквивалентны. Поместим в любой точке пространства три источника световых лучей, распространяющихся во взаимно перпендикулярных направлениях. Эти лучи образуют координатные оси Ox, Oy, Oz.

Перенесем источники света вдоль одной из осей, например оси z. Новые оси O'x', O'y' будут параллельны Ox и Oy. Длины осей бесконечны, поэтому перенесение источников из точки O в точку O' не изменит геометрическую ситуацию. Аналогичное рассуждение можно провести и вращая одновременно все источники в точке на один и тот же угол. Неизменность свойств пространства при перемещениях и вращении отражает основные свойства евклидова пространства - однородность и изотропию. При указанных выше операциях сохранят свою форму и основные уравнения кривых. 


ГЕОМЕТРИЯ В ЦЕЛОМ И ГЕОМЕТРИЯ В МАЛОМ

Наши привычные представления о геометрических фигурах основаны на образе, вписанном, вложенном в евклидово пространство. Да и сама евклидова геометрия широко использует образы объемов или поверхностей, вложенных в евклидово пространство. Для общего представления о фигурах  подобная картина вполне достаточна. Однако такие образные представления являются в некотором смысле атавизмом, оставшимся в наследие от убеждения в единственности евклидовой геометрии, понимаемой как ветвь математики. Как только сформировались идеи неевклидовой геометрии, возникла необходимость описания поверхностей-пространств любой размерности независимо от фона - пространства, куда вкладываются эти поверхности-пространства. Последние в такой постановке задачи выступают, как носители самостоятельной автономной геометрии, не связанные с осями координат, вписанными в глобальное евклидово пространство-фон. 

Отметим, что в малом участке можно определить евклидову систему отсчета. В малом для гладких поверхностей имеет смысл понятие вектора и векторного произведения, инвариантного относительно трансляций и поворотов в пределах малого участка. Но в отличие от евклидова пространства, в котором существует глобальная система координат, обладающая подобными свойствами, в общем случае существование евклидовой системы возможно лишь в малом.

По существу это утверждение имеет простой наглядный (геометрический) смысл. Гладкую поверхность можно аппроксимировать бесконечным набором примыкающих малых плоскостей, расположенных друг относительно друга под определенными углами. 


РАССЛОЕННЫЕ ПРОСТРАНСТВА

Уже упоминалось ранее, что точка иногда определяется как геометрический объект, не имеющий протяженности. Поэтому напрашивался вывод, что точка в таком понимании не имеет структуры. Однако критический анализ основных понятий геометрии, а также внутренние, имманентные законы развития
дифференциальной геометрии стимулировали создание и развитие нового математического образа - расслоенного пространства.
Начнем с представления основных образов (картин) расслоенных пространств.

Первый связан с обобщением понятия точки. Точка в расслоенном пространстве эквивалентна автономному пространству. Иначе говоря, можно наглядно представить, что точка в расслоенном пространстве эквивалентна точке в смысле Евклида (объект, лишенный протяжения), к которой
"прикреплено" (или лучше: которой соответствует) свое пространство. Можно представить расслоенное пространство в целом. Оно представляет совокупность большого числа (как правило, бесконечного множества) пространств, из которых одно, называемое базой, играет особую роль. Каждая точка
этого пространства взаимно однозначно связана со своим пространством, называемым слоем над базой. Каждой точке в базе соответствует свое пространство (слой), отражающий структуру точки.

Второй пример расслоенного пространства не поддается такой наглядной интерпретации. Каждый его элемент - сфера с точкой базы в центре. Однако совокупное расслоенное пространство имеет пять измерений. Представление о нем как о множестве сфер, расположенных в трехмерном пространстве,
неправильно. Слои-сферы находятся в дополнительных измерениях, и поэтому расслоенное пространство в целом нельзя изобразить адекватно на бумажном листе.
 Чтобы определить связность в слоях, введем расстояние от начала слоя (отрезка), которое является, вообще говоря, произвольной точкой отсчета. Важно лишь, чтобы во всех слоях были бы одинаковые точки отсчета. Иначе говоря, любой круг, пересекающий слои и параллельный основанию полусферы, мог бы определить точки отсчета. Естественно (но не необходимо) отождествить точки отсчета с точками круга - базы. Будем  далее измерять угол между векторами во время параллельного переноса в произвольных единицах (например, радианах) и откладывать этот угол на прямых - слоях пространства. В результате операции полный обход периметра треугольника на сфере будет соответствовать некоторому подъему величины 
проекции в слое. Этот подъем определяется смещением векторов в полусфере при возвращении в точку, совпадающую с началом вектора a после полного обхода контура.

Расслоение полусферы на круг и линейное пространство - одно из простейших расслоений, позволяющих дать наглядную интерпретацию связности расслоенного пространства. В общем случае подобная наглядность утрачивается. Идея введения общего определения связности близка к основной идее
дифференциальной геометрии: в малом объеме метрика пространства евклидова или псевдоевклидова. В расслоенных пространствах также постулируется простота пространства в малом. Полагается, что в малом расслоенное пространство можно представить простым произведением, частным случае  которого и было расслоение полусферы. 

В результате обхода микроконтура в полном пространстве или базе определяется компонента связности в базе. Далее в соответствии с приведенным выше примером операция обхода микроконтура количественно отображается в пространстве слоев, определяя таким образом связность в этом пространстве.

В заключение сделаем одно замечание, имеющее, как мы увидим далее, прямое отношение к физике (динамике). Хотя значение связности определяется однозначно, однако операция ее вычисления неоднозначна.

ВРЕМЯ


Классическая геометрия (Евклида, Лобачевского, Римана) по своему существу статична. И хотя в ее пределах правомочна операция переноса фигур, но она имеет лишь одно предназначение: установление их равновеликости. Поэтому этот перенос (как правило, мысленный) может осуществляться бесконечно быстро или сколь угодно медленно. Скорость переноса, а следовательно, и его время геометров не
интересовали. Геометрия была вне времени. Видимо, время было тем фактором, который более всего способствовал тому, что до конца прошлого столетия геометрия и физика существовали раздельно.

Физическое время - это количественная мера упорядоченной эволюции материального объекта как целого от его возникновения до гибели.

Существует единое метагалактическое время, которое можно принять за эталон времени всех находящихся в ней объектов. Если бы дело обстояло иначе, Метагалактика не обладала бы однородностью во всех ее точках и время протекало бы по-разному в разных ее частях, что, вероятно, привело бы к различию в физических закономерностях, а это, в свою очередь, к нарушению мировой гармонии и путанице -
невообразимому усложнению физических законов.

Любопытно, как проблема деления времени на прошлое, настоящее и будущее нашла отражение в афоризме Аристотеля: "Времени почти нет, ибо прошлого уже нет, будущего еще нет, а настоящее длится мгновение". Прошлого действительно нет, оно - было, так же как и будущее - будет. Об этом
свидетельствуют многочисленные эмпирические факты, относящиеся к компетенции физики.
Можно дать краткое определение физического времени. Однако оно содержит понятия, сами нуждающиеся в доопределениях, которые, в свою очередь, требуют разъяснений, и так ad infinitum. Вероятно,
такая ситуация - отражение фундаментальности времени. Тем не менее дать пусть даже неполное определение времени было необходимо. Иначе трудно (или, скорее, невозможно) обсуждать взаимосвязи пространства-времени и динамики.

КЛАССИЧЕСКАЯ ДИНАМИКА И ЕЕ ГЕОМЕТРИЯ

Решение основной проблемы классической механики предполагает априорное определение физического пространства, в котором движутся материальные точки. В рамках ньютоновской физики оно отождествляется с пространством Евклида.

Траектория описывается математической кривой, однако не тождественна ей. Математическая кривая - образ, существующий безотносительно к другим объектам или системам координат. Этот образ возник задолго до создания аналитической геометрии. Иное дело - физическая траектория. Это понятие имеет лишь относительный смысл: траектория материальной точки определяется относительно другого тела, обычно
называемого телом отсчета.

Абсолютного движения не существует. По этой причине физики предпочитают говорить не о системе координат, а о системе отсчета, подразумевая, что это понятие включает также и тело отсчета. Если оно может быть отождествлено с материальной точкой, то его обычно принимают за начало координат. Подчеркнем, что здесь мы встречаемся не с терминологическими уточнениями. В отличие от начала
координат тело отсчета, как правило, влияет, а иногда и определяет состояния исследуемого тела (материальной точки).

"ВЫВОД" КЛАССИЧЕСКОЙ ДИНАМИКИ ИЗ СВОЙСТВ ПРОСТРАНСТВА

Почти во всех учебниках физики характеристики пространства и уравнения движения излагаются независимо. Поэтому создается впечатление, переходящее в убеждение, о независимости этих основных элементов физики. В действительности же свойства пространства (евклидовость) практически предопределяют классическую динамику. Как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию
тесной связи основ динамики и свойств пространства, нельзя полностью свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил.

ПРОСТРАНСТВО СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
(ПРОСТРАНСТВО МИНКОВСКОГО)

Специальная теория относительности базируется на двух постулатах.

1. Существует класс эквивалентных инерциальных систем отсчета. (Этот постулат оправдывается свойствами пространства: изотропией и однородностью.)

2. Скорость света в пустоте постоянна и не зависит от движения его источника или приемника.
Физической иллюстрацией возможности подобного нарушения евклидовости является существование макроскопических тел и сильных (>=10**13 Гс) электромагнитных полей. В областях, где находятся эти
объекты, скорость света отличны от c. Поэтому при формулировании второго постулата особо подчеркивается свойство среды, в которой распространяется свет (пустота). Верные традиции этой книги, мы остановимся на простейшей системе, состоящей из тела отсчета и материальной точки (пробного тела).
Отличие от векторного определения пространства Евклида сводится к правилу знаков: квадрат временно-подобной компоненты берется со знаком "=", а квадраты пространственно-подобных компонент - со знаком "-".

ЭЙНШТЕЙНОВСКАЯ ТЕОРИЯ ТЯГОТЕНИЯ

У специальной теории есть свои проблемы, которые частично были блестяще использованы Эйнштейном при создании общей теории относительности

Вообразим систему отсчета, в которой движутся два тела (1 и 2) с разными скоростями. Тогда в области расположения тела 1 в соответствии с формулами (28) о сокращении масштабов пространство будет
искажено: его однородность будет нарушена. Следовательно, будет нарушено основное условие определения инерциальной системы отсчета. Фактически многочастичное макроскопическое тело своим объемом нарушает однородность и изотропию пространства. Тем самым подрываются основы определения инерциальной системы координат. Макроскопическое (неточечное) тело нарушает свойства пространства Минковского: его однородность и изотропию. Поэтому становится проблематичным его использование для описания макроскопического тела.

Это рассуждение - пример мысленного эксперимента. В нашем распоряжении нет твердых тел, которые можно разгонять до релятивистских скоростей, и поэтому непосредственная экспериментальная проверка выводов теории относительности применительно к макроскопическим телам затруднительна.
Теоретические же рассуждения на эту тему (релятивистские преобразования температуры) лишены убедительности и однозначности, характерных для специальной теории относительности точечных тел.
Попробуем применить эту теорию к конкретному макроскопическому телу - вращающемуся диску,
знаменитому диску Эйнштейна. Пусть диск, являющийся абсолютно твердым телом, вращается равномерно вокруг своего центра. Очевидно, что линейные скорости точек диска, расположенные на разных расстояниях от центра, будут различны (пропорциональны расстояниям r). Тогда в этих точках будет различное сокращение. Пространство станет неоднородным, а следовательно, неевклидовым. Вращение диска есть неинерциальное ускоренное движение. Из этих двух фактов
Эйнштейн заключил, что ускоренное движение нарушает евклидовость (псевдоевклидовость) пространства.
Именно эта идея Эйнштейна (взаимосвязь геометрии и динамики) кардинально изменила наши представления о неком абсолютном континууме пространства-времени. Даже пространство Минковского было в известном смысле абсолютно (независимость метрики от динамики). Общая теория относительности уничтожила эти остатки абсолютизации. Однако ограничиваться утверждением,
что динамика влияет на свойства пространства, - это почти ничего не сказать. Это общее утверждение, а физики базируется на конкретных уравнениях. Чтобы их сформулировать, Эйнштейн придумал второй мысленный эксперимент (лифт Эйнштейна). Основная его идея базируется на факте установленном с фантастической точностью (до двенадцатого знака): равенство гравитационной и инертной массы. из этого утверждения и законов Ньютона следует, что любое тело движется в однородном гравитационном поле с одинаковым ускорением. А мы видели, что такое движение приводит к
изменению метрики пространства. Однако (и это составляет суть второй гипотезы Эйнштейна) пространство всегда остается римановым. Следовательно, интервал не зависит от системы отсчета: ds**2 = (ds')**2 .

ОБЪЕДИНЕННАЯ ТЕОРИЯ ВЗАИМОДЕЙСТВИЙ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

В настоящее время достаточно хорошо изучены четыре фундаментальных взаимодействия: гравитационное,
слабое, электромагнитное и сильное. Конечная цель заключается в том, чтобы написать единое
уравнение, описывающее все четыре взаимодействия. Эта задача включает три элемента: 1) описание объединенного взаимодействия с помощью одной или нескольких констант взаимодействия, 2) включение в уравнение общих характеристик взаимодействий, 3) исключение из теории бесконечных величин, которые с неизбежностью возникают при использовании изолированных, необъединенных взаимодействий.
Основная идея объединения взаимодействий относится не к макроскопическому пространству Евклида, а к "внутреннему" пространству элементарных частиц, отражающему их квантовые числа (см. Дополнение). Это пространство проще всего отождествить с расслоенным пространством, где база - пространство Минковского, а пространства, соответствующие квантовым числам элементарных частиц (спину, изотопическому спину и цвету - см. Дополнение), являются слоями. Слои можно представить как сферы, "прикрепленные" к каждой точке базы. Векторы состояний вращаются внутри сфер-слоев в соответствии
с правилами квантовой механики.
Квантовая гравитация - существенно неперенормируемая теория. Можно сказать, что это свойство гравитации глубоко внутренне присуще ей. Естественный путь преодоления этого дефекта видится в построении теории, объединяющей все четыре взаимодействия - супергравитации, когда бесконечности,
существующие в каждой изолированной теории, скомпенсируются. На этом пути есть определенные достижения, но расстояние до окончательной цели - построения полностью перенормируемой
супергравитации - кажется еще весьма большим.

КАЛИБРОВОЧНАЯ ИНВАРИАНТНОСТЬ - ОСНОВНОЙ ДИНАМИЧЕСКИЙ ПРИНЦИП

Три основополагающих принципа построения объединенной теории:
Однако первый (требование единства константы) и третий (устранение бесконечностей) принципы имеют ясно очерченный алгебраический характер (единое число, конечность
теоретических выражений), то второй - единый тип симметрии - кажется менее определенным. В самом деле, симметрий, воплощенных в теорию групп, бесконечно много, и совершенно не очевидно, чем следует руководствоваться при их выборе. Правда, ясны общие принципы, связанные с симметрией наблюдаемого 4-пространства Минковского (изотропия и однородность). Эти пространственные симметрии являются, как известно, первопричиной основных законов сохранения: закона сохранения энергии-импульса, закона сохранения момента импульса и инвариантности уравнений движения относительно преобразований Лоренца.
В последние два десятилетия постепенно намечались, а затем четко очертились контуры руководящего принципа поиска "истинной" симметрии динамических уравнений. Эта симметрия, известная под
названием калибровочной инвариантности, была обнаружена очень давно - со времен первых исследований электромагнитных явлений, однако вначале она казалась излишеством. Затем, в
двадцатых годах XX в., в особенности после работ немецкого математика и физика Г.Вейля (крестного отца этого типа симметрии), к ней привыкли, но не придавали ей сколько-нибудь решающего значения. Лишь после успехов в создании теории объединенного электрослабого взаимодействия
и квантовой хромодинамики - теории сильного взаимодействия - среди специалистов возникло общее убеждение: калибровочная инвариантность есть основной динамический принцип.

Понятие калибровочной инвариантности основано на постулате существования некоторой неизмеряемой на опыте функции состояния системы, но определяющей это состояние. В частном случае статического
электрического поля такой функцией состояния является потенциал FI. Известно, что абсолютное значение FI не определяет никакие физические характеристики системы. Простейшее проявление этого принципа - безопасность прикосновения к одному из двух проводов, по которым
протекает ток. Более сложным выводом является утверждение, что энергия системы, или работа, реализуемая при перемещении из точки x| в точку x|, определяется не абсолютными значениями потенциалов FI(x|)1 и FI(x|)2, а исключительно их разностью FI(x|)1 - FI(x|)2. Следовательно, значение потенциала определено с точностью до аддитивной постоянной. Если во всем пространстве (для статической системы) изменить
потенциал на одну и ту же величину b, то физическая ситуация останется неизменной.
Существенно, что в рамках электростатики осуществляется глобальное (а не локальное) калибровочное преобразование. Отсюда можно вывести важное следствие: если потенциал нашей системы представляется некоторой функцией FI(r), то калибровочное преобразование (изменение потенциала в каждой
точке на постоянную величине b) не изменяет основного свойства пространства: изотропию и однородность. Поскольку наша система относительно тела отсчета была сферически-симметричной, то, следовательно, все наблюдаемые физические величины (энергия, сила, действующая на пробное
тело) также должны характеризоваться сферической симметрией.
Вывод о калибровочной инвариантности базируется на допущении о неизменности фактора e при
калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т.е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью.

ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ

Рассмотрим пример: систему невзаимодействующих частиц, движущихся по классическим траекториям. Каждой частице в момент времени t соответствуют свои координаты и проекции импульса. Таким образом, каждой точке видимого пространства соответствует значение вектора импульса. Можно рассматривать
движение системы частиц в этом пространстве, не придавая совокупности импульсов никакого геометрического смысла. Кроме того, можно полагать, что вся совокупность координат играет роль базы, а векторы импульсов - слоев. При отсутствии взаимодействия подобное расслоенное пространство
тривиально, а использование в данном случае образа расслоенного пространства и его несколько непривычных для физиков понятий - ненужное усложнение. Разумнее рассматривать изолированно два пространства: конфигурационное (координаты) и импульсное.

Однако ситуация меняется, если пытаться интерпретировать внутренние квантовые числа элементарных частиц. Здесь мы остановимся на геометрической интерпретации спина, изотопического спина и цвета
Введем вектор, характеризующий состояние системы, которую для определенности мы будем отождествлять с частицей. В первом приближении под состоянием следует понимать значения ее координат и вектора импульса.
Однако если пытаться включить в понятие состояния значения внутренних квантовых чисел, то элементарная (привычная) наглядность состояния частицы утрачивается. Если понятие спина частицы можно отождествить с вращением вектора состояния в обычном конфигуральном пространстве (например,
пространстве Минковского), то уже при попытке наглядно геометрически интерпретировать изотопический спин возникают определенные трудности. Формализмы обычного и изотопического
спинов тождественны. Они соответствуют вращениям вектора состояния в трехмерном пространстве`. В интерпретации спина проблем нет. Это наше привычное евклидово пространство.
Однако в каком пространстве вращается вектор изотопического спина? Со времен введения понятия изотопического спина (Гейзенберг, 1932) произносили слова, похожие на заклинание: вектор изотопического спина вращается в воображаемом "зарядовом" пространстве.
Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина К каждой точке прямой "прикреплена" сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно.

МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ

Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения:

1. Взаимодействие обуславливается свойствами частиц -переносчиков взаимодействия, и в частности их изотопическим спином

2. Состояние представляется вектором, вращающимся в слое расслоенного пространства.

3. Взаимодействие определяется характеристиками расслоенного пространства, и в частности связностью.

4. В основе взаимодействия лежит калибровочная инвариантность.

Наше мышление устроено таким образом, что реально представить это дополнительное, пятое измерение мы не в состоянии. Поэтому некоторое упрощенное представление о дополнительном измерении может дать двумерная плоскость (база), к каждой точке которой "прикреплена" окружность с
центром в этой точке. Плотность слоев убывает с увеличением расстояния от начала координат - тела отсчета с зарядом e.

Объединение всех четырех взаимодействий можно интерпретировать как расслоенное пространство с базой
- 4-мерным пространством Римана и 7-мерным слоем чрезвычайно малых размеров. Эти размеры определяются по порядку величины из соображений размерности (величина, имеющая размерность
длины и образованная из универсальных фундаментальных постоянных G, h и c) и значения константы объединенного взаимодействия.


ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ?

наиболее популярной в настоящее время является гипотеза о том, что элементарным физико-геометрическим объектом является не точка, а струна.Реально сейчас говорят о так называемых суперструнах, однако, чтобы чрезмерно не усложнять изложение введением новых и весьма непривычных понятий, мы будем использовать образ обычной струны. Одной из главных причин, вызвавших
появление этого образа, является известный экспериментальный факт - ненаблюдаемость кварков. В соответствии с кварковой гипотезой адроны состоят из кварков, которые обречены на пленение в пределах адронов. Рассмотрим для простоты бозон-систему, состоящую из двух кварков. Тогда, полагая, что силы, связывающие оба кварка, подобны натяжению струны, нетрудно объяснить невылетание кварков,
допуская, что натяжение пропорционально расстоянию между кварками. В этом случае, чтобы раздвинуть кварки на расстояние l, затрачивается энергия, пропорциональная l.
Следовательно, чтобы вынудить кварк покинуть адрон (что соответствует расстоянию l, равному бесконечности), нужно затратить бесконечную энергию, что и определяет невылетание кварков.

Весьма популярный в настоящее время образ суперструн аналогичен струнам, возникшим при описании сильного взаимодействия, с одним существенным различием. Суперструны - объекты с протяженностью порядка планковской длины, и они соответствуют объединению всех взаимодействий, включая гравитацию.

В рамках теории суперструн наметился известный прогресс в устранении бесконечностей в теории поля, были получены характеристики некоторых фундаментальных частиц и т.д.

Эти достижения вселяют надежду на то, что элементарным блоком в физической геометрии является точка, а одномерное образование - струна.

В струнной геометродинамике существует один замечательный факт. На начальном этапе развития струнной теории умели квантовать лишь в том случае, если струна вложена в пространство с размерностью N=26.

Сейчас, после разработки более совершенных методов и перехода к планковским масштабам, эту операцию научились производить при критической размерности N=10. Такое значение почти совпадает с размерностью N=11 пространства Калуца-Клейна (см. разд.7 гл.3), соответствующего геометрической интерпретации объединения всех четырех взаимодействий.

Естественен вопрос: не являются ли струнная геометродинамика и геометрическая интерпретация объединенного взаимодействия a la Калуца-Клейна разными проявлениями одной и той же субстанции?

Струна, свернутая в замкнутую окружность, образует сферу S| . Из множества таких окружностей можно получить 1 сферу любой размерности или другие геометрические фигуры.

Возможность объединения обоих направлений (струнной геометрии и геометрии Калуца-Клейна) является весьма соблазнительной. И хотя оба направления развиваются почти параллельно, кажется, что их слияние будет весьма серьезным шагом на пути решения проблемы планковской физики. Сейчас предпринимаются первые попытки в этом направлении.

Обычно под понятием "Вселенная" подразумевается все сущее, но часто вкладывают и другое содержание: Вселенная - это область, наблюдаемая нашими приборами. Размеры этой области приблизительно равны 10**28 см. Но здесь неизбежен вопрос. Почем то, что мы наблюдаем, и есть все сущее? Не является ли подобное отождествление отражением атавистического инстинкта, который был свойственен человеку,
впервые задавшему себе вопрос о природе его "мира"?
Фридман предположил, что Метагалактика всегда была изотропной и однородной. иначе говоря, в любой
момент своей эволюции в Метагалактике все направления равноправны (изотропия), а плотность материи одинакова. Прообразом такой Метагалактики является двумерная сфера, плотность вещества которой постоянна для любого момента времени. Здесь полезно отметить, что условия Фридмана
неравноправны для пространства и времени.

Изотропия Метагалактики прекрасно подтверждается в процессе исследования углового распределения реликтового излучения. Оно заполняет всю Метагалактику и поэтому может служить критерием ее симметрии. С высокой степенью точности никаких отклонений от изотропии Метагалактики до сих пор (на
конец 1986 г.) обнаружено не было.
Известно, что Метагалактика неоднородна. Существуют острова высокой концентрации вещества: звезды, галактики, скопления галактик. Однако наибольшие масштабы таких островов в 10**2 - 10**3 раз меньше размеров Метагалактики. Поэтому с такой точностью (10**-3 - 10**-2) можно полагать
Метагалактику однородной. Мы вместе с другими космологами примем этот постулат однородности.

Общим для большинства современных моделей является главное - допущение, что в течение времени от планковского T| до T|~~10**-35 с (время, характерное для большого объединения, определяет окончание фазового перехода и имеет грубо оценочное значение) Вселенная развивалась по де Ситтеру и увеличила свои размеры от планковского (l|~~10**-33 см) до гигантского радиуса, существенно превышающего размеры Метагалактики. В некоторых простых моделях размер пузыря, возникающего на деситтеровской cтадии, достигает 10**(10**6) см (эту цифру полезно сравнить с размерами Метагалактики 10**28 см). Именно поэтому к такому пузырю можно применить понятие "Вселенная", которое и
в данном случае отражает пределы нашего знания о мире в целом. Заметим, что огромные размеры пузыря определяются значением показателя экспоненты Ht в формуле (62). Действительно, полагая, что величина H определяется фундаментальными постоянными HP, G и c, нетрудно получить из
соображений размерности, что H ~ t|**-1 ~~ 10*43 с**-1 .

Размерность физического пространства N = 3 занимает среди геометродинамических характеристик особое место. Изотропию и однородность физического пространства - его евклидовость (псевдоевклидовость) - можно объяснить его простотой. Эти свойства пространства характеризуют его
предельную симметричность. Пространство Евклида - единственное максимально симметричное пространство с нулевой (экстремальной) кривизной. Экстремальность симметрии (хотя и в меньшей степени) характеризует и другие космологические пространства (пространство Лобачевского или сферу).
Поскольку известно, что природа "любит" симметрию и экстремальность, то кажется естественным, что ее выбор остановился на симметричных пространствах.

В рамках модели раздувающейся Вселенной евклидовость пространства Метагалактики естественно интерпретируется в духе основных геометрических идей. Метагалактика - малая часть Вселенной, а малые области достаточно гладкого пространства можно хорошо описать с помощью евклидовой
геометрии.

Совершенно иная ситуация возникает при попытке подойти к размерности физического пространства с математических позиций. Значение N = 3 практически невыделенное число. В натуральном ряду экстремальную величину имеют значения N = 1 (или при более общем подходе к геометрии N = 0) и N = БЕСК. Тем не менее хорошо известно, что размерность физического пространства в исследованных интервалах 10**-16 ~< r ~< 10**28 см не равна этим значениям.

Итак, будем искать природу размерности нашей Метагалактики в физической (динамической) выделенности размерности N = 3. Разумеется, в подобном подходе мы будем полагать неизменным другое его свойство - евклидовость, которое кажется вполне естественным вследствие его простоты.8 дальнейшем будем опираться на полузабытую работу П.Эренфеста "Как проявляется трехмерность пространства в
фундаментальных законах физики", значение которой можно оценить лишь в настоящее время. Сейчас рассуждения Эренфеста кажутся настолько простыми, что мы ограничимся лишь качественными соображениями`. В этой работе содержатся две взаимосвязанные кардинальные идеи, развитие которых и будет положено в основу нашего анализа природы пространства и физических закономерностей на современном уровне.

------------------------------------------------------------
` Подробно труднодоступная работа Эренфеста излагается в
кн.: Горелик Г.Е. Почему пространство трехмерно. М.:Наука,
1982
------------------------------------------------------------

Первая идея заключается в доказательстве отсутствия некоторых основных устойчивых связанных состояний при изменении численного значения фундаментальных постоянных.

Вторая - в утверждении: чтобы понять, почему мир устроен так, а не иначе, необходимо варьировать, изменять фундаментальные постоянные.

Принцип целесообразности - это констатация факта, что существование основных устойчивых состояний обусловлено всей совокупностью физических закономерностей, включая размерность пространства и другие численные значения фундаментальных постоянных. Для существования основных устойчивых состояний физические закономерности не только достаточны, но и необходимы. Наш мир устроен очень хрупко, небольшое изменение его законов разрушает его элементы - основные связанные устойчивые состояния, к которым можно отнести ядра атомов, атомы, звезды

В основе антропной интерпретации лежит утверждение, что физические условия в Метагалактике максимально способствуют возникновению жизни. Мы не знаем достаточных условий для этого процесса, но можем сформулировать некоторые очевидные необходимые условия. Ясно, что для возникновения жизни необходимо длительное существование звезд и Метагалактики, тогда оптимальным условием будет равенство времен жизни звезд t| и Метагалактики t|.

Из палеонтологии известно, что жизнь на Земле возникла в эпоху, отстоящую от нашей примерно на
3*10**9 лет. Это время составляет всего 30% от времени жизни Солнца. Цивилизация же возникла в Междуречье примерно 10**4 лет тому назад, что составляет ничтожную долю (10**-6) от времени существования Солнца. Поэтому если бы Солнце существовало 10**9 лет (на порядок меньше его
действительного времени жизни), то мы бы не имели возможности обсуждать вопросы мироздания.

Большая неустойчивость структуры Метагалактики к численным значениям многих фундаментальных постоянных и их флюктуативность в рядах подобных им величин может быть интерпретирована на единственной физической основе. Эта основа (если ее не связывать с вмешательством провидения)
базируется на гипотезе существования большого ансамбля метагалактик со своими значениями фундаментальных постоянных, в том числе и размерности физического пространства N. Эти константы формируются в момент возникновения метагалактик`. Наблюдаемое значение
размерности - лишь проявление случайных процессов, сопровождающих рождение метагалактик. Размерность N и другие "истинные" характеристики физического пространства проявляются либо вблизи планковской области, либо при расстояниях, превышающих размеры Метагалактики (10**28 см).
Физическое (наблюдаемое) пространство формируется одновременно с другими характеристиками Метагалактики при временах 0 < t| ~< 10**-43 с. Здесь нужно подчеркнуть одно важное, принципиальное обстоятельство. Оставаясь лишь в рамках математических представлений и закрывая глаза на многочисленные связи между константами, их флюктуативность и проблемы объединения теории поля, мы можем считать оба современных описания физической реальности при N=3 (стандартный формализм Лагранжа) и N>3 (многомерная теория типа Калуцы) равноправными. Сейчас отсутствуют противоречия
между экспериментальными данными об элементарных частицах и их описанием, основанным на привычном лагранжевом формализме в пространстве Минковского (Римана) с размерностью пространственных координат N=3. Однако возникло слишком много вопросов, которые такая теория не способна объяснить,
чтобы их можно было игнорировать.

В настоящее время единственный способ решить эти вопросы - допустить, что на малых (планковских) расстояниях истинное физическое пространство имеет сложную структуру. Кажется наиболее естественным, что эта структура в первом приближении моделируется пространствами типа Калуца-Клейна.
Сейчас говорят о компактных сферических пространствах с размерностью d=6 или 7, но представляется почти очевидным, что подобное представление о физическом пространстве отражает лишь уровень нашего понимания законов природы. В действительности эти пространства могут иметь существенно
более сложную структуру природу и более высокую размерность. Возможно, что говорить о конкретной размерности в планковской области бессмысленно. В этой области, вероятно, все флюктуирует, изменяется во времени и можно говорить лишь об очень грубо усредненных величинах. Нельзя, например, исключить, что в планковской области размерность имеет дробное значение. Чтобы понять это утверждение, вообразим ситуацию, когда близорукий человек издалека рассматривает сильно изрезанный холмистый берег. Ему этот берег покажется одномерной линией. Однако по мере приближения к берегу (или при использовании оптических приборов) будут становиться все более различимыми его неровные контуры, очертания холмов. Рельеф (а следовательно, и размерность) будет зависеть от ракурса и расстояния до берега. Усредняя "измеренную" размерность по всем ракурсам и расстояниям, можно получить
нецелое число.

Вопросы (проблемы), которые нужно решить для создания теории происхождения Метагалактики (Вселенной).

1. Создать последовательную квантовую теорию гравитации, что, вероятно, эквивалентно созданию единой теории поля.

2. Создать теорию физического вакуума, что, по-видимому, является частью единой теории поля.

3. Создать теорию происхождения фундаментальных постоянных. Вероятно, в первую очередь следует понять происхождение значений масс частиц.

4. Ясно понять природу физического пространства, и в первую очередь его размерности.

Мы далеки от законченной теории в планковской области. Однако мы знаем вполне достаточно, чтобы попытаться моделировать образование метагалактик. При подобной процедуре следует учесть
следующие факторы:

1. Существование деситтеровской и фридмановской фаз эволюции метагалактик.

2. Фазовый переход между обеими стадиями.

3. "Истинную" структуру физического пространства.

4. Принцип целесообразности и антропный принцип.

5. Флюктуативность фундаментальных констант в ряду себе подобных.

Сделаем два предположения.

1. В пространстве N измерений (N>=11) всегда существует физический вакуум. Для простоты можно базовое пространство представить как многомерное пространство Минковского. Разумеется, такое допущение простейшее, но не обязательное.
2. Плотность энергии вакуума как функция поля FI представляется кривыми на рис.7.

Из этих предположений и сформулированных выше пяти постулатов можно нарисовать следующую картину образования Метагалактики. В метастабильном вакууме непрерывно возникают возмущения, нестабильности. Вследствие наличия потенциального барьера эти возмущения не успевают развиться.
По образному выражению Дж.Уилера и С.Хокинга, вакуум пенится. Обычно возникают микровселенные с планковскими размерами. Однако иногда происходит раздувание области, в которой возникло возмущение, и последующая перестройка вакуума.

В процессе развития анизотропных возмущений в вакууме происходит компактификация размерности. Огромная энергия вакуума расходуется на расширение метагалактик, образование новых частиц большой энергии и нагрев Метагалактики. Перестройка вакуума сопровождается переходом от
деситтеровского расширения к фридмановскому режиму Такой переход можно объяснить следующим образом. На деситтеровской стадии плотность вакуума RO| >> RO| -плотности вещества и излучения. При фазовом переходе плотность вакуума RO| резко уменьшается (RO| << RO|), и возникают условия, необходимые для осуществления фридмановской стадии.

Фундаментальные постоянные и физическое пространство формируются на этих самых первых мгновениях эволюции Вселенной и Метагалактики. Численные значения фундаментальных постоянных в Метагалактике соответствуют существованию в ней основных устойчивых связанных состояний.

Так на сегодня вырисовываются основные черты грандиозного акта - рождения Метагалактики.

Спин - число, характеризующее собственное вращение элементарных частиц. Количественная его характеристика - момент количества движения. Спин может приобретать целое (в единицах HP: 0, HP, 2HP,...) или полуцелое (1/2 HP, 2/3 HP,...) значения. Наглядно, но неточно можно представить спин как вращение частицы в обычном пространстве Минковского. Ошибочность такого
представления связана с точечностью некоторых элементарных частиц, и в первую очередь электрона. Для точечной частицы ее размеры r=0, следовательно, ее момент M = [rv] = 0. В квантовомеханической интерпретации спин - собственное вращение вектора состояния частицы в обычном пространстве.


Изотопический спин характеризует вырождение элементарных частиц по массам. Изотопический спин - характеристика семейств сильно взаимодействующих частиц. В семейство частиц с одинаковым изотопическим спином входят одинаково сильно взаимодействующие частицы, но с различными электрическими зарядами и близкими массами.







Это статья Образование на Куличках
http://education.kulichki.net/nuke

URL этой статьи:
http://education.kulichki.net/nuke/modules.php?name=News&file=article&sid=101